
SemGuS-Lib Format 1.0

Jinwoo Kim October 28, 2021

This document defines the current version of the SemGuS format, which is intended to be the standard

input and output format for solvers aiming to solve SemGuS problems. The current version of the SemGuS

format is designed such that existing solvers supporting the SyGuS format or the SMT-LIB standard will

be able to parse SemGuS problems with minimal overhead. As such, the SemGuS format borrows many

concepts and language constructs from SyGuS and SMT-LIB. In particular, where the syntax and semantics

of constructs are identical, we will refrain from copying the whole definition and instead refer readers to the

corresponding sections of the SyGuS and SMT-LIB standard documents, partly in order to keep in sync

with updates to the other formats.

This document is currently incomplete; specifically, it is missing a section that details the semantics of

each command that we will describe in this document. This will be added in a future version, along with

example SemGuS problems.

An instance of a SemGuS problem consists of the following:

1. A base background theory T ,

2. A finite set of term types that dictate a universe of terms to be used in the synthesis problem, specified

as a regular tree grammar (RTG) R

3. Semantics for each constructor within the term-type declaration, specified using Constrained Horn

Clauses c1, c2, ¨ ¨ ¨ , ci

4. A set of functions f1, f2, ¨ ¨ ¨ , fj to synthesize,

5. Syntactic constraints for f1, f2, ¨ ¨ ¨ , fj , also specified as a RTG G that defines a subset of terms inside

the universe of terms defined by R

6. A semantic constraint φ that act as the behavioral specification of the set of functions to synthesize,

which may be specified over the CHCs c1, c2, ¨ ¨ ¨ , ci, a set of (implicitly) universally quantified variables

x1, x2, ¨ ¨ ¨ , xk, and the functions f1, f2, ¨ ¨ ¨ , fj themselves.

The goal of a SemGuS problem is to find a term e P G such that φre{f s is true.

1 Syntax

We now introduce the syntax for specifying SemGuS problems. A SemGuS problem xSemgusy is defined

as a list of commands xCmdys:

xSemgusy ::“ xCmdy˚

1



We now introduce the possible cases that a command xCmdy may take first; then we introduce any required

sub-expressions.

1.1 Comments

Comments in SemGuS, like SyGuS and SMT-LIB, are indicated by a leading semicolon. Upon encoun-

tering a semicolon, the rest of the input upto the next newline character should be ignored.

1.2 Metadata

SemGuS supports recording metadata related to SemGuS problems (such as problem authors, creation

date, expected answers, etc.) directly as part of its syntax. Metadata commands are specified via the

following syntax:

xSemgusy ::“ pmetadata :xAttributeyq

An xAttributey is either a single keyword or a keyword paired with a value appropriate for the attribute (see

Section 1.8).

The mechanism for specifying metadata coincides with the definition for annotations and term attributes

in the SMT-LIB Standard, except for the fact that a metadata command should not have a leading ! symbol

(see Section 3.4, 3.5 of the SMT-LIB Standard, Version 2.6).

1.3 Term Type Declarations

Term-type declarations define a universe of possible terms for use in the synthesis problem (that may be

further restricted by a separate grammar later on). For those coming from SyGuS, it is convenient to think

of the term-type declaration a declaring a background theory of terms that one may later choose to further

restrict when solving a particular synthesis problem, similar to how SyGuS problems allow one to restrict

the considered terms within a background theory such as LIA.

Term-types are declared via the following syntax:

pdeclare-term-types pxSortDeclyn`1 q pxDTDeclyn`1 qq

This syntax (including the definitions for subterms xSortDecly and xDTDecly) is identical to the datatype

declaration command declare-datatypes within SMT-LIB and SyGuS (see Section 2.9 of the SyGuS language

standard, Version 2.1, and Section 4.2.3 of the SMT-LIB Standard) except for the fact that the heading

command is named declare-term-types.

2



1.4 Semantic Declarations

SemGuS requires one to explicitly state the semantics for terms within the considered universe defined in

§1.3; combined with the term-type declarations, one may consider these as the (custom-defined) background

theory to operate over.

Semantics for terms defined in §1.3 is done using the define-funs-rec command, as following:

pdefine-funs-rec pxFunction_Decyn`1 q pxTermyn`1 qq

This syntax (including the definitions for subterms xFunction_Decy and xTermy) is identical to the com-

mand for declaring mutually recursive functions in the SMT-LIB standard (see Section 4.2.3 of the SMT-LIB

standard, Version 2.6).

Although the syntax for specifying semantics in SemGuS files is permissive, SemGuS requires that

semantics are defined using semantic relations and CHCs. In addition, SemGuS requires that these semantics

be defined on an production-by-production basis—thus in practice, the following restrictions should be

enforced by a SemGuS solver:

1. The return types of all functions declared in declare-funs-rec should i) contain an argument t of a

term-type defined in §1.3, and ii) return a value of type Bool .

2. The body part xTermy should be a match statement that matches t over the possible constructs defined

in §1.3.

In addition, SemGuS allows multiple xTermys to be associated with a single xPatterny in pattern match-

ing. This allows one to equip multiple CHCs (for cases like while loops, or nondeterminstic programs) to a

single constructor. Thus the syntax for xmatch-casey (taken from the SMT-LIB standard, used for defining

match statements) is changed to:

xmatch-casey ::“ pxPatterny xTermy`q

All other subexpressions are identical to the SMT-LIB standard.

1.5 Synth-Fun

The synth-fun command declares a single actual function to synthesize. The syntax is identical to the

synth-fun command in the SyGuS standard; refer to Section 2.9 of the Sygus format, Version 2.1 for details.

To synthesize multiple functions, one should have multiple synth-fun commands in the file, one for each

function to synthesize.

3



1.6 Constraints

The constraint command declares the behavioral specification for the functions to synthesize defined

using synth-fun. The syntax once again borrows from the SyGuS standard; refer to Section 2.9 of the Sygus

standard, Version 2.1 for details.

1.7 Other Commands

SemGuS accepts other standard SMT-LIB and SyGuS commands such as variable or sort declarations.

All accepted other commands coincide with the syntax in SyGuS and SMT-LIB; a full list of other accepted

commands can be found in §1.9.

To keep in sync with updates to SyGuS, we omit a hardcoded syntax definition for most constructs in

this part, and instead refer the reader to the corresponding sections within the SyGuS format specification.

1.8 Subexpressions

Most subexpression definitions used in SemGuS (such as xTermys, xAttributeys, etc.) are identical to

their definitions in SyGuS and SMT-LIB. We give a quick overview here.

1.8.1 Literals

Literals are special sequences of characters that are mostly used to denote values and 0-ary symbols

of a background theory. The definition for literals in SemGuS is identical to that in SyGuS; for further

information, consult Section 2.2 of the SyGuS standard, Version 2.1, or Section 3.1 of the SMT-LIB standard,

Version 2.6.

1.8.2 Symbols and Identifiers

A symbol is a non-empty sequence of alphabets, digits, and certain special characters, that may not begin

with a digit and is not a reserved word. An identifier is an extension of symbols to symbols that are indexed

by integer constants or other symbols. The syntax of symbols and identifiers in SemGuS is identical to

SyGuS and SMT-LIB; we refer the reader to Section 2.3 and 2.4 of the SyGuS standard, Version 2.1, for

further information.

1.8.3 Attributes

An attribute is either a keyword xKeywordy or a keyword with an associated value. Attributes are used

to annotate terms, as well as provide metadata in the metadata command. The syntax for keywords and

attributes is identical to that in SyGuS; we refer the reader to Section 2.5 of the SyGuS standard for

further information. An xAttributeV aluey depends on the xKeywordy it is associated with. It is up to the

4



solver to support combinations of keywords and attribute values; the SemGuS standard does not provide a

pre-defined list of keywords that must be supported.

1.8.4 Terms

Terms xTermy are used to specify grammars, constraints, semantics, and many other things. They use the

same syntax as in SyGuS; we refer the reader to Section 2.7 of the SyGuS standard for further information.

Note that any term may be annotated with an attribute via the ! xTermy xAttributey` syntax.

1.9 Command Syntax

We now give an incomplete list of commands that make up the SemGuS format, focusing on a basic list

of commands that we expect to be central to specifying a SemGuS problem. In addition to these commands,

SemGuS supports all commands that SyGuS supports with the provision that semantics of some of these

commands may be different; in essence, SemGuS diverges only from the SyGuS format through the addition

of the declare-term-types command, with some additional semantic restrictions.

Some of the productions listed here contain nonterminals (e.g., xFunction_Decy) that are not defined

in this document; for the concrete definition of these productions, we refer the reader to Section 2.9 of the

Sygus specification, Version 2.1.

xCmdy ::“ pcheck -synthq

| pconstraint xTermyq

| pdeclare-term-types pxSortDeclyn`1q pxDTDeclyn`1qq

| psynth-fun xSymboly pxSortedV ary˚q xSorty xGrammarDefy?q

| xSmtCmdy

xSmtCmdy ::“ pdeclare-var xSymboly xSortyq

| pdeclare-datatype xSymboly xSortyq

| pdeclare-datatypes pxSortDeclyn`1q pxDTDeclyn`1qq

| pdeclare-sort xSymboly xNumeralyq

| pdefine-fun xSymboly pxSortedV ary˚q xSorty xTermyq

| pdefine-sort xSymboly xSortyq

| pdefine-funs-rec pxFunction_Decyn`1q pxTermyn`1qq

| pset-info xKeywordy xLiteralyq

| pset-logic xSymbolyq

| pset-option xKeywordy xLiteralyq

5


